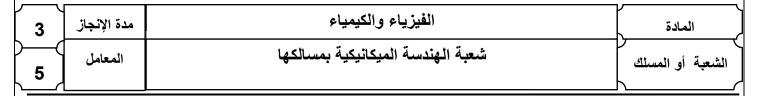


الامتحان الوطني الموحد للبكالوريا ___



الدورة الاستدراكية 2018 -عناصر الإجابة-

RR141

المركز الوطني للتقويم والإمتحانات والتوجيه

Eléments de réponse et Barème

Chimie: 6 points

Exercice		Question	Eléments de réponse	Barème	Référence de la question
	Partie 1	1.1.	Equation de la réaction	0,5	 Ecrire l'équation de réaction de dosage (en utilisant une seule flèche).
		1.2.	Vérification de la valeur de C _A	0,5	 Exploiter la courbe ou les résultats du dosage.
		1.3.1.	Aboutir à : $\tau_1 \approx 0.013$	0,5	Définir le taux d'avancement final et déterminer sa valeur à partir d'une mesure.
		1.3.2.	Raisonnement ; $K_{A1} \simeq 1, 6.10^{-5}$	0,5 + 0,25	 Ecrire l'expression la constante d'acidité K_A associée à l'équation de la réaction d'un acide avec l'eau. Calculer, à partir de la concentration et du pH d'une solution acide, l'avancement final de la réaction de cet acide avec l'eau et le comparer avec l'avancement maximal.
Chim		2.	$\tau_2 > \tau_1$; l'acide méthanoïque s'ionise dans l'eau plus que l'acide éthanoïque	0,5	 Savoir que, pour une transformation donnée, le taux d'avancement final dépend de la constante d'équilibre et de l'état initial du système.
Chimie (6 points)	Partie 2	1.	Equation de la réaction d'estérification	0,75	 Écrire l'équation des réactions d'estérification et d'hydrolyse.
point			Ethanoate d'éthyle	0,25	 Nommer les esters comportant cinq atomes de carbone au maximum.
s)		2.1.	Aboutir à : $r = 67\%$	0,5	 Calculer le rendement d'une transformation.
		2.2.	Aboutir à : K ≃ 4	0,5	 Savoir que le quotient de réaction Qr,éq à l'état d'équilibre d'un système prend une valeur, indépendante de la composition initiale, nommée constante d'équilibre.
		2.3.1.	Aboutir à : $Q_{r,i} \simeq 1$	0,5	 Donner l'expression littérale du quotient de réaction Q_r et calculer sa valeur dans un état donné du système.
		2.3.2.	Sens direct ; $Q_{r,i} < K$	2 x 0,25	Déterminer le sens d'évolution d'un système donné en comparant la valeur d u quotient de réaction dans l'état initial à la constante d'équilibre, dans le cas des réactions acidobasiques et d'oxydo-réduction.

مه مح	الامتحان الوطني الموحد للبكالوريا (المسالك المصنية) – الدورة الاستدراكية 2018 – عناصر الإجابة	
الصفحة 2 RR141	– مادة: الغيزياء والكيمياء — هعبة المندسة الميكانيكية بمسالكما	

		2.3.3.	Elimination de l'eau	0,25	 Savoir que l'excès de l'un des réactifs et/ou l'élimination de l'un des produits déplace l'état d'équilibre du système dans le sens direct.
--	--	--------	----------------------	------	---

Physique: 13 points

Exe	rcice	Question	Eléments de réponse	Barème	Référence de la question	
	Partie 1	1.	Onde longitudinale	0,25	 Définir une onde transversale et une onde longitudinale. 	
		2.	T = 0.5 ms	0,25	 Définir pour une onde progressive sinusoïdale, la période, la fréquence, la longueur d'onde. 	
		3.	Oui ; $N = 2 \text{ kHz}$; $20 \text{ Hz} \le N \le 20 \text{ kHz}$	0,25 0,25	 Connaître et exploiter les propriétés générales des ondes. 	
Exercice 1: (3 points)		4.	A	0,25	Définir une onde progressive à une dimension et savoir la relation entre l'élongation d'un point du milieu de propagation et l'élongation de la source : $y_M(t) = y_S(t-\tau)$.	
	Partie 2	1.	Oui	0,25	 Connaître les limites des longueurs d'onde dans le vide du spectre visible et les couleurs correspondantes. 	
		2.	$v = 5.10^{14} \text{ Hz}$	0,25	 Connaître et savoir utiliser la relation 	
		3.	$\lambda_{\rm L} \simeq 451 \ \rm nm$	0,25	 λ = c / V Définir l'indice d'un milieu transparent pour une fréquence donnée. 	
				4.1.	Phénomène de diffraction	0,25
		4.2.	С	0,5	• Utiliser de la relation : $\theta = \lambda / a$.	
		4.3.	L=24 mm	0,25	- Utiliser de la reladion . $\mathbf{U} = \mathcal{K}/a$.	

حة	الصف
$\overline{}$	3
л`	\

RR141

الامتحان الوطني الموحد للبكالوريا (المسالك الممنية)— الدورة الاستحراكية 2018 — غناصر الإجابة — ماحة: الغيزياء والكيمياء — شعبة المندسة الميكانيكية بمسالكما

Exercice	Question	Eléments de réponse	Barème	Référence de la question
	1.1.	Raisonnement	0,5	 Établir l'équation différentielle vérifiée par i(t) et vérifier sa solution.
	1.2.	$I_1 = 0.10 \text{ A}$; $I_2 = 0.12 \text{ A}$	2 x 0,25	 Connaître les variations l'intensité du courant i lorsqu'on applique une tension aux bornes du dipôle RL et déduire l'expression de la tension aux bornes de la bobine.
	1.3.	Vérification de la valeur de R	0,25	 Établir l'équation différentielle vérifiée par i(t) et vérifier sa solution.
Exercice 2 : (4 points)	1.4.	$\tau_1 = 10 \text{ ms}$; $\tau_2 = 2.5 \text{ ms}$	2x 0,25	 Savoir exploiter un document expérimental pour : identifier les tensions observées ; montrer l'influence de R et de L lors de l'établissement et de la disparition du courant ; déterminer une constante de temps.
: (4 po		Démarche ; $r_1 = 10 \Omega$	2x0,25	 Établir l'équation différentielle vérifiée par i(t) et vérifier sa solution.
ints)	1.5.	$L_1 = 0.6 \text{ H}$; $L_2 = 125 \text{ mH}$	2x0,25	 Connaître et utiliser l'expressionde la constante de temps. Déterminer l'inductance d'une bobine à partir de la constante de temps.
		$\mathcal{E}_{e,\text{max}} = 2 \text{ mJ}$; $T_0 = 2.5 \text{ ms}$	2 x 0,25	 Connaître et exploiter les diagrammes d'énergie. Connaître et exploiter l'expression de
	2.1.	$C = 1,25 \mu F$	0,5	l'énergie emmagasinée dans un condensateur. Connaître et exploiter l'expression de la période propre, la signification de chacun des termes et leur unité.
	2.2.	$\mathscr{E} = \mathscr{E}_{e, \text{max}} = 2 \text{ mJ}$	0,25	 Connaître et exploiter l'expression de l'énergie totale du circuit.

حة	الصف
$\overline{}$	4
⊿`	

RR141

الامتحان الوطني الموحد للبكالوريا (المسالك الممنية) – الدورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الغيزياء والكيمياء – هعبة المنحسة الميكانيكية بمسالكما

Exe	rcice	Question	Eléments de réponse	Barème	Référence de la question
		1.	Démarche ; $a_G = g - \frac{T}{m}$	1	 Appliquer la deuxième loi de Newton pour déterminer et exploiter les grandeurs vectorielles cinématiques V
		2.1.	$a_G = 1.1 \text{ m.s}^{-2}$	0,5	• Exploiter le diagramme des vitesses $v_G = f(t)$.
	Pa	2.2.	Raisonnement	0,5	 Connaître et exploiter les caractéristiques du mouvement rectiligne uniformément varié et ses équations horaires.
	Partie 1	3.	Aboutir à : $\ddot{\theta} = 11 \text{ rad.s}^{-2}$	0,5	 Connaître les expressions des composantes a_N et a_T en fonction des grandeurs angulaires.
Exercice (4.	Démarche ; $J_{\Delta} \simeq 1,62.10^{-2} \text{ kg.m}^2$	0,5+0,25	 Appliquer la relation fondamentale de la dynamique dans le cas de la rotation autour d'un axe fixe. Faire l'étude dynamique d'un système mécanique formé d'un solide en translation et d'un autre solide en rotation autour d'un axe fixe.
Exercice 3: (7 points)	Partie 2	1.	Les oscillations sont isochrones pour $\theta \le 12^{\circ}$ (faibles amplitudes)	0,5	 Reconnaitre les mouvements oscillatoires, les mouvements périodiques, amplitude du mouvement, position d'équilibre et période propre.
3)		2.	Raisonnement	0,75	Appliquer la relation fondamentale de la dynamique de rotation pour établir l'équation différentielle du mouvement d'un pendule pesant dans le cas des frottements négligeables et des petites oscillations.
		3.	$T_0 = 2\pi \sqrt{\frac{2.J_{\Delta^+}}{M.g.L}}$	0,5	Connaître et exploiter l'expression de la période propre, et la fréquence
		4.	Aboutir à : $J_{\Delta} = 2,5.10^{-2} \text{ kg.m}^2$	0,5	propredu pendule pesant
		5.1.	Courbe (2) ; Justification	2x0,25	 Exploiter les diagrammes d'énergie.
		5.2.	Démarche ; $E_m = 12,5 \text{ mJ}$	2x0,25	 Utiliser l'expression de l'énergie
			5.3.	Démarche ; $\dot{\theta}_1 = 1 \text{ rad.s}^{-1}$	2x0,25